Inlet structure

Problem: Deposits in the inlet structure due to non-uniform inflow. **Solution:** An adaptation of the building geometry results in a uniform inflow.

With CFD-Simulation: Enhancement of the inflow by 20 %.

Bar screens

Problem: The assignment of the bar screens is different. This results in deposits due to non-uniform inflow and in increased maintenance effort. **Solution:** An adjustment of the building geometry leads to a uniform inflow of the bar screens. In this way, dead zones and/or underruns of the minimum speed are avoided. **With CFD-Simulation:** Enhancement of the distribution by 60 %.

Grit channel

Problem: Due to unfavorable flow velocities (retention times), too much organic matter remains in the sand. Sand deposits in the biology or in the digester occur. **Solution:** Optimisation of the air entry as well as of the building geometry in the grit channel **With CFD-Simulation:** Increasing the deposition rate by an average of 200 % and reduction of the energy consumption approximately 60 %.

Primary sedimentation

Problem: The deposition rate of organic substances in the primary sedimentation is too low and results in an overloaded biology.

Solution: Increasing the deposition rate by using flow optimisation.

With CFD-Simulation: Increase of the deposition rate by 30 % and more primary sludge for higher energy yields.

Aeration

Problem: Unfavourable oxygen transfer (SSOTR) due to a negative interaction of the flow and ventilation. Short circuit flows.

Solution: Examination of the arrangement of the aerators, agitators as well as the influent and effluent. **With CFD-Simulation:** Increase of the aeration efficiency by an average rate of 20 %.

Final sedimentation

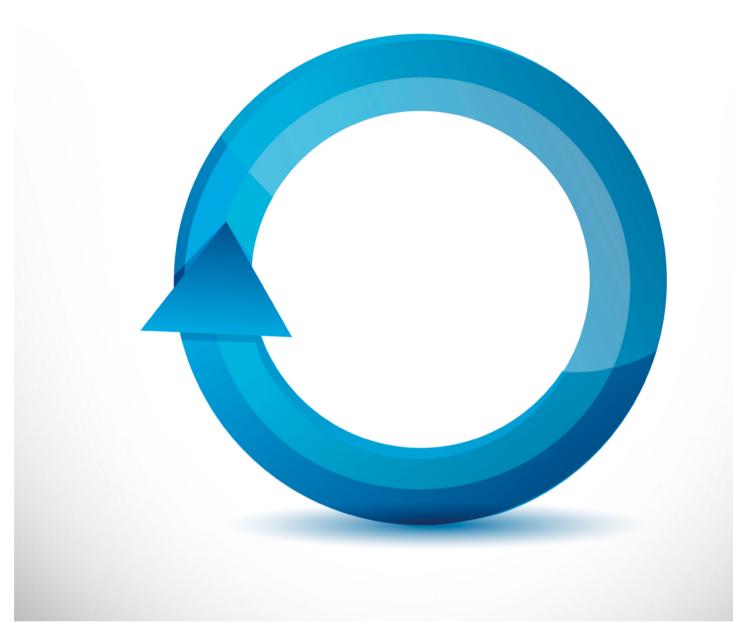
Problem: Increased effluent values. Hydraulic limitation of the treatment plant. Unfavourable flow conditions. **Solution:** Height-variable inlet construction or pure conventional flow-optimised conversion. **With CFD-Simulation:** Increase of the efficiency of sludge volume feeding and retention of fine particles.

Ozone reactor

Problem: Design of the required reactor volume. The turnover rate is a function of the concentration and the reaction time.

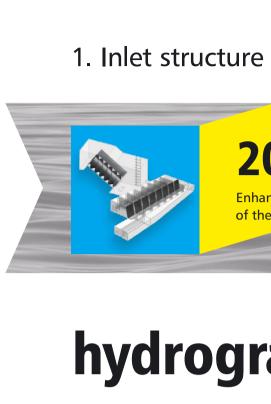
Solution: Calculation of the turnover rates taking into account the flow and concentration ratios. Optimisation of the reactor geometry through guide walls.

With CFD-Simulation: Decrease of the reactor volume by 70 %.


Sludge treatment

Problem: Low gas yield/deposits. Poor mixing. Low flow velocities. **Solution:** Flow optimisation by using other mixing units.

With CFD-Simulation: Increase of the active volume of the digester by 30 % and prevention of deposits.


hydrograv GmbH August-Bebel-Str. 48 · 01219 Dresden · Germany Tel: +49 351/811 355-0 info@hydrograv.com · www.hydrograv.com

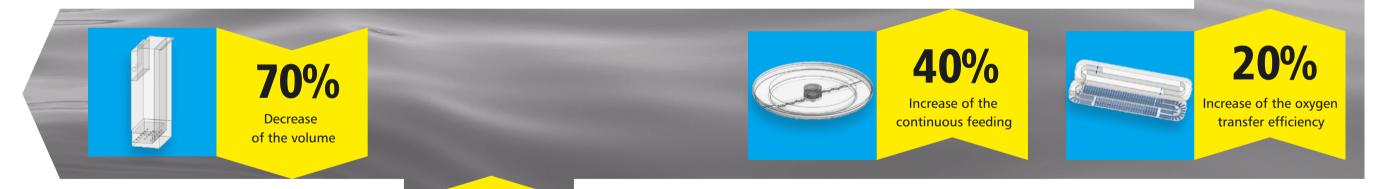
hydrograv360

Optimisation potential around your treatment plant with CFD of hydrograv

2. Bar screens

3. Grit channels

4. Primary sedimentation



hydrograv360

Obtained optimisation potential from practice around the wastewater treatment plants of our customers with CFD-Simulations by hydrograv

30%

Increase of the mixing

7. Ozone reactor

8. Sludge treatment 6. Final sedimentation

5. Aeration